This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker eqoprab2bw when possible. (Contributed by Mario Carneiro, 4-Jan-2017) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqoprab2b |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssoprab2b | ||
| 2 | ssoprab2b | ||
| 3 | 1 2 | anbi12i | |
| 4 | eqss | ||
| 5 | 2albiim | ||
| 6 | 5 | albii | |
| 7 | 19.26 | ||
| 8 | 6 7 | bitri | |
| 9 | 3 4 8 | 3bitr4i |