This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Tarski's system S2 (1 rule, 6 schemes)
Axiom scheme ax-4 (Quantified Implication)
19.26
Metamath Proof Explorer
Description: Theorem 19.26 of Margaris p. 90. Also Theorem *10.22 of
WhiteheadRussell p. 147. (Contributed by NM , 12-Mar-1993) (Proof
shortened by Wolf Lammen , 4-Jul-2014)
Ref
Expression
Assertion
19.26
⊢ ∀ x φ ∧ ψ ↔ ∀ x φ ∧ ∀ x ψ
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢ φ ∧ ψ → φ
2
1
alimi
⊢ ∀ x φ ∧ ψ → ∀ x φ
3
simpr
⊢ φ ∧ ψ → ψ
4
3
alimi
⊢ ∀ x φ ∧ ψ → ∀ x ψ
5
2 4
jca
⊢ ∀ x φ ∧ ψ → ∀ x φ ∧ ∀ x ψ
6
id
⊢ φ ∧ ψ → φ ∧ ψ
7
6
alanimi
⊢ ∀ x φ ∧ ∀ x ψ → ∀ x φ ∧ ψ
8
5 7
impbii
⊢ ∀ x φ ∧ ψ ↔ ∀ x φ ∧ ∀ x ψ