This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Limits
elo1d
Metamath Proof Explorer
Description: Sufficient condition for elementhood in the set of eventually bounded
functions. (Contributed by Mario Carneiro , 21-Sep-2014) (Proof
shortened by Mario Carneiro , 26-May-2016)
Ref
Expression
Hypotheses
elo1mpt.1
⊢ φ → A ⊆ ℝ
elo1mpt.2
⊢ φ ∧ x ∈ A → B ∈ ℂ
elo1d.3
⊢ φ → C ∈ ℝ
elo1d.4
⊢ φ → M ∈ ℝ
elo1d.5
⊢ φ ∧ x ∈ A ∧ C ≤ x → B ≤ M
Assertion
elo1d
⊢ φ → x ∈ A ⟼ B ∈ 𝑂 ⁡ 1
Proof
Step
Hyp
Ref
Expression
1
elo1mpt.1
⊢ φ → A ⊆ ℝ
2
elo1mpt.2
⊢ φ ∧ x ∈ A → B ∈ ℂ
3
elo1d.3
⊢ φ → C ∈ ℝ
4
elo1d.4
⊢ φ → M ∈ ℝ
5
elo1d.5
⊢ φ ∧ x ∈ A ∧ C ≤ x → B ≤ M
6
2
abscld
⊢ φ ∧ x ∈ A → B ∈ ℝ
7
1 6 3 4 5
ello1d
⊢ φ → x ∈ A ⟼ B ∈ ≤ 𝑂 ⁡ 1
8
2
lo1o12
⊢ φ → x ∈ A ⟼ B ∈ 𝑂 ⁡ 1 ↔ x ∈ A ⟼ B ∈ ≤ 𝑂 ⁡ 1
9
7 8
mpbird
⊢ φ → x ∈ A ⟼ B ∈ 𝑂 ⁡ 1