This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem eldm

Description: Membership in a domain. Theorem 4 of Suppes p. 59. (Contributed by NM, 2-Apr-2004)

Ref Expression
Hypothesis eldm.1 A V
Assertion eldm A dom B y A B y

Proof

Step Hyp Ref Expression
1 eldm.1 A V
2 eldmg A V A dom B y A B y
3 1 2 ax-mp A dom B y A B y