This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Partition-Equivalence Theorems
disjdmqs
Metamath Proof Explorer
Description: If a relation is disjoint, its domain quotient is equal to the domain
quotient of the cosets by it. Lemma for partim2 and petlem via
disjdmqseq . (Contributed by Peter Mazsa , 16-Sep-2021)
Ref
Expression
Assertion
disjdmqs
⊢ Disj R → dom ⁡ R / R = dom ⁡ ≀ R / ≀ R
Proof
Step
Hyp
Ref
Expression
1
disjdmqsss
⊢ Disj R → dom ⁡ R / R ⊆ dom ⁡ ≀ R / ≀ R
2
disjdmqscossss
⊢ Disj R → dom ⁡ ≀ R / ≀ R ⊆ dom ⁡ R / R
3
1 2
eqssd
⊢ Disj R → dom ⁡ R / R = dom ⁡ ≀ R / ≀ R