This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC TOPOLOGY
Metric spaces
Basic metric space properties
metgt0
Metamath Proof Explorer
Description: The distance function of a metric space is positive for unequal points.
Definition 14-1.1(b) of Gleason p. 223 and its converse. (Contributed by NM , 27-Aug-2006)
Ref
Expression
Assertion
metgt0
⊢ D ∈ Met ⁡ X ∧ A ∈ X ∧ B ∈ X → A ≠ B ↔ 0 < A D B
Proof
Step
Hyp
Ref
Expression
1
metxmet
⊢ D ∈ Met ⁡ X → D ∈ ∞Met ⁡ X
2
xmetgt0
⊢ D ∈ ∞Met ⁡ X ∧ A ∈ X ∧ B ∈ X → A ≠ B ↔ 0 < A D B
3
1 2
syl3an1
⊢ D ∈ Met ⁡ X ∧ A ∈ X ∧ B ∈ X → A ≠ B ↔ 0 < A D B