This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC CATEGORY THEORY
Categories
Sections, inverses, isomorphisms
df-inv
Metamath Proof Explorer
Description: The inverse relation in a category. Given arrows f : X --> Y and
g : Y --> X , we say g Inv f , that is, g is an inverse of
f , if g is a section of f and f is a section of g .
Definition 3.8 of Adamek p. 28. (Contributed by FL , 22-Dec-2008)
(Revised by Mario Carneiro , 2-Jan-2017)
Ref
Expression
Assertion
df-inv
⊢ Inv = c ∈ Cat ⟼ x ∈ Base c , y ∈ Base c ⟼ x Sect ⁡ c y ∩ y Sect ⁡ c x -1
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cinv
class Inv
1
vc
setvar c
2
ccat
class Cat
3
vx
setvar x
4
cbs
class Base
5
1
cv
setvar c
6
5 4
cfv
class Base c
7
vy
setvar y
8
3
cv
setvar x
9
csect
class Sect
10
5 9
cfv
class Sect ⁡ c
11
7
cv
setvar y
12
8 11 10
co
class x Sect ⁡ c y
13
11 8 10
co
class y Sect ⁡ c x
14
13
ccnv
class y Sect ⁡ c x -1
15
12 14
cin
class x Sect ⁡ c y ∩ y Sect ⁡ c x -1
16
3 7 6 6 15
cmpo
class x ∈ Base c , y ∈ Base c ⟼ x Sect ⁡ c y ∩ y Sect ⁡ c x -1
17
1 2 16
cmpt
class c ∈ Cat ⟼ x ∈ Base c , y ∈ Base c ⟼ x Sect ⁡ c y ∩ y Sect ⁡ c x -1
18
0 17
wceq
wff Inv = c ∈ Cat ⟼ x ∈ Base c , y ∈ Base c ⟼ x Sect ⁡ c y ∩ y Sect ⁡ c x -1