This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Converse reflexivity
cosselcnvrefrels5
Metamath Proof Explorer
Description: Necessary and sufficient condition for a coset relation to be an element
of the converse reflexive relation class. (Contributed by Peter Mazsa , 5-Sep-2021)
Ref
Expression
Assertion
cosselcnvrefrels5
⊢ ≀ R ∈ CnvRefRels ↔ ∀ x ∈ ran ⁡ R ∀ y ∈ ran ⁡ R x = y ∨ x R -1 ∩ y R -1 = ∅ ∧ ≀ R ∈ Rels
Proof
Step
Hyp
Ref
Expression
1
cosselcnvrefrels2
⊢ ≀ R ∈ CnvRefRels ↔ ≀ R ⊆ I ∧ ≀ R ∈ Rels
2
cossssid5
⊢ ≀ R ⊆ I ↔ ∀ x ∈ ran ⁡ R ∀ y ∈ ran ⁡ R x = y ∨ x R -1 ∩ y R -1 = ∅
3
2
anbi1i
⊢ ≀ R ⊆ I ∧ ≀ R ∈ Rels ↔ ∀ x ∈ ran ⁡ R ∀ y ∈ ran ⁡ R x = y ∨ x R -1 ∩ y R -1 = ∅ ∧ ≀ R ∈ Rels
4
1 3
bitri
⊢ ≀ R ∈ CnvRefRels ↔ ∀ x ∈ ran ⁡ R ∀ y ∈ ran ⁡ R x = y ∨ x R -1 ∩ y R -1 = ∅ ∧ ≀ R ∈ Rels