This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosselcnvrefrels5 | |- ( ,~ R e. CnvRefRels <-> ( A. x e. ran R A. y e. ran R ( x = y \/ ( [ x ] `' R i^i [ y ] `' R ) = (/) ) /\ ,~ R e. Rels ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosselcnvrefrels2 | |- ( ,~ R e. CnvRefRels <-> ( ,~ R C_ _I /\ ,~ R e. Rels ) ) |
|
| 2 | cossssid5 | |- ( ,~ R C_ _I <-> A. x e. ran R A. y e. ran R ( x = y \/ ( [ x ] `' R i^i [ y ] `' R ) = (/) ) ) |
|
| 3 | 2 | anbi1i | |- ( ( ,~ R C_ _I /\ ,~ R e. Rels ) <-> ( A. x e. ran R A. y e. ran R ( x = y \/ ( [ x ] `' R i^i [ y ] `' R ) = (/) ) /\ ,~ R e. Rels ) ) |
| 4 | 1 3 | bitri | |- ( ,~ R e. CnvRefRels <-> ( A. x e. ran R A. y e. ran R ( x = y \/ ( [ x ] `' R i^i [ y ] `' R ) = (/) ) /\ ,~ R e. Rels ) ) |