This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Converse reflexivity
cosselcnvrefrels2
Metamath Proof Explorer
Description: Necessary and sufficient condition for a coset relation to be an element
of the converse reflexive relation class. (Contributed by Peter Mazsa , 25-Aug-2021)
Ref
Expression
Assertion
cosselcnvrefrels2
⊢ ≀ R ∈ CnvRefRels ↔ ≀ R ⊆ I ∧ ≀ R ∈ Rels
Proof
Step
Hyp
Ref
Expression
1
elcnvrefrels2
⊢ ≀ R ∈ CnvRefRels ↔ ≀ R ⊆ I ∩ dom ⁡ ≀ R × ran ⁡ ≀ R ∧ ≀ R ∈ Rels
2
cossssid
⊢ ≀ R ⊆ I ↔ ≀ R ⊆ I ∩ dom ⁡ ≀ R × ran ⁡ ≀ R
3
2
anbi1i
⊢ ≀ R ⊆ I ∧ ≀ R ∈ Rels ↔ ≀ R ⊆ I ∩ dom ⁡ ≀ R × ran ⁡ ≀ R ∧ ≀ R ∈ Rels
4
1 3
bitr4i
⊢ ≀ R ∈ CnvRefRels ↔ ≀ R ⊆ I ∧ ≀ R ∈ Rels