This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
cbv1v
Metamath Proof Explorer
Description: Rule used to change bound variables, using implicit substitution.
Version of cbv1 with a disjoint variable condition, which does not
require ax-13 . (Contributed by NM , 5-Aug-1993) (Revised by BJ , 16-Jun-2019)
Ref
Expression
Hypotheses
cbv1v.1
⊢ Ⅎ x φ
cbv1v.2
⊢ Ⅎ y φ
cbv1v.3
⊢ φ → Ⅎ y ψ
cbv1v.4
⊢ φ → Ⅎ x χ
cbv1v.5
⊢ φ → x = y → ψ → χ
Assertion
cbv1v
⊢ φ → ∀ x ψ → ∀ y χ
Proof
Step
Hyp
Ref
Expression
1
cbv1v.1
⊢ Ⅎ x φ
2
cbv1v.2
⊢ Ⅎ y φ
3
cbv1v.3
⊢ φ → Ⅎ y ψ
4
cbv1v.4
⊢ φ → Ⅎ x χ
5
cbv1v.5
⊢ φ → x = y → ψ → χ
6
2 3
nfim1
⊢ Ⅎ y φ → ψ
7
1 4
nfim1
⊢ Ⅎ x φ → χ
8
5
com12
⊢ x = y → φ → ψ → χ
9
8
a2d
⊢ x = y → φ → ψ → φ → χ
10
6 7 9
cbv3v
⊢ ∀ x φ → ψ → ∀ y φ → χ
11
1
19.21
⊢ ∀ x φ → ψ ↔ φ → ∀ x ψ
12
2
19.21
⊢ ∀ y φ → χ ↔ φ → ∀ y χ
13
10 11 12
3imtr3i
⊢ φ → ∀ x ψ → φ → ∀ y χ
14
13
pm2.86i
⊢ φ → ∀ x ψ → ∀ y χ