This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Predicate calculus with equality: Auxiliary axiom schemes (4 schemes)
Axiom scheme ax-12 (Substitution)
nfim1
Metamath Proof Explorer
Description: A closed form of nfim . (Contributed by NM , 2-Jun-1993) (Revised by Mario Carneiro , 24-Sep-2016) (Proof shortened by Wolf Lammen , 2-Jan-2018) df-nf changed. (Revised by Wolf Lammen , 18-Sep-2021)
Ref
Expression
Hypotheses
nfim1.1
⊢ Ⅎ x φ
nfim1.2
⊢ φ → Ⅎ x ψ
Assertion
nfim1
⊢ Ⅎ x φ → ψ
Proof
Step
Hyp
Ref
Expression
1
nfim1.1
⊢ Ⅎ x φ
2
nfim1.2
⊢ φ → Ⅎ x ψ
3
nf3
⊢ Ⅎ x φ ↔ ∀ x φ ∨ ∀ x ¬ φ
4
1 3
mpbi
⊢ ∀ x φ ∨ ∀ x ¬ φ
5
nftht
⊢ ∀ x φ → Ⅎ x φ
6
2
sps
⊢ ∀ x φ → Ⅎ x ψ
7
5 6
nfimd
⊢ ∀ x φ → Ⅎ x φ → ψ
8
pm2.21
⊢ ¬ φ → φ → ψ
9
8
alimi
⊢ ∀ x ¬ φ → ∀ x φ → ψ
10
nftht
⊢ ∀ x φ → ψ → Ⅎ x φ → ψ
11
9 10
syl
⊢ ∀ x ¬ φ → Ⅎ x φ → ψ
12
7 11
jaoi
⊢ ∀ x φ ∨ ∀ x ¬ φ → Ⅎ x φ → ψ
13
4 12
ax-mp
⊢ Ⅎ x φ → ψ