This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Version of cbv1 with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 5-Aug-1993) (Revised by BJ, 16-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbv1v.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| cbv1v.2 | ⊢ Ⅎ 𝑦 𝜑 | ||
| cbv1v.3 | ⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 ) | ||
| cbv1v.4 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | ||
| cbv1v.5 | ⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 → 𝜒 ) ) ) | ||
| Assertion | cbv1v | ⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 → ∀ 𝑦 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbv1v.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | cbv1v.2 | ⊢ Ⅎ 𝑦 𝜑 | |
| 3 | cbv1v.3 | ⊢ ( 𝜑 → Ⅎ 𝑦 𝜓 ) | |
| 4 | cbv1v.4 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | |
| 5 | cbv1v.5 | ⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝜓 → 𝜒 ) ) ) | |
| 6 | 2 3 | nfim1 | ⊢ Ⅎ 𝑦 ( 𝜑 → 𝜓 ) |
| 7 | 1 4 | nfim1 | ⊢ Ⅎ 𝑥 ( 𝜑 → 𝜒 ) |
| 8 | 5 | com12 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
| 9 | 8 | a2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → 𝜓 ) → ( 𝜑 → 𝜒 ) ) ) |
| 10 | 6 7 9 | cbv3v | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ∀ 𝑦 ( 𝜑 → 𝜒 ) ) |
| 11 | 1 | 19.21 | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 𝜓 ) ) |
| 12 | 2 | 19.21 | ⊢ ( ∀ 𝑦 ( 𝜑 → 𝜒 ) ↔ ( 𝜑 → ∀ 𝑦 𝜒 ) ) |
| 13 | 10 11 12 | 3imtr3i | ⊢ ( ( 𝜑 → ∀ 𝑥 𝜓 ) → ( 𝜑 → ∀ 𝑦 𝜒 ) ) |
| 14 | 13 | pm2.86i | ⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 → ∀ 𝑦 𝜒 ) ) |