This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
addsubsub23
Metamath Proof Explorer
Description: Swap the second and the third terms in a difference of a sum and a
difference (or, vice versa, in a sum of a difference and a sum).
(Contributed by AV , 15-Nov-2025)
Ref
Expression
Hypotheses
negidd.1
⊢ φ → A ∈ ℂ
pncand.2
⊢ φ → B ∈ ℂ
subaddd.3
⊢ φ → C ∈ ℂ
addsub4d.4
⊢ φ → D ∈ ℂ
Assertion
addsubsub23
⊢ φ → A + B - C − D = A − C + B + D
Proof
Step
Hyp
Ref
Expression
1
negidd.1
⊢ φ → A ∈ ℂ
2
pncand.2
⊢ φ → B ∈ ℂ
3
subaddd.3
⊢ φ → C ∈ ℂ
4
addsub4d.4
⊢ φ → D ∈ ℂ
5
1 2
addcld
⊢ φ → A + B ∈ ℂ
6
5 3 4
subsubd
⊢ φ → A + B - C − D = A + B - C + D
7
1 2 3
addsubd
⊢ φ → A + B - C = A - C + B
8
7
oveq1d
⊢ φ → A + B - C + D = A − C + B + D
9
1 3
subcld
⊢ φ → A − C ∈ ℂ
10
9 2 4
addassd
⊢ φ → A − C + B + D = A − C + B + D
11
6 8 10
3eqtrd
⊢ φ → A + B - C − D = A − C + B + D