This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem subsubd

Description: Law for double subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φ A
pncand.2 φ B
subaddd.3 φ C
Assertion subsubd φ A B C = A - B + C

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 pncand.2 φ B
3 subaddd.3 φ C
4 subsub A B C A B C = A - B + C
5 1 2 3 4 syl3anc φ A B C = A - B + C