This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap the second and the third terms in a difference of a sum and a difference (or, vice versa, in a sum of a difference and a sum). (Contributed by AV, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
| pncand.2 | |- ( ph -> B e. CC ) |
||
| subaddd.3 | |- ( ph -> C e. CC ) |
||
| addsub4d.4 | |- ( ph -> D e. CC ) |
||
| Assertion | addsubsub23 | |- ( ph -> ( ( A + B ) - ( C - D ) ) = ( ( A - C ) + ( B + D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | |- ( ph -> A e. CC ) |
|
| 2 | pncand.2 | |- ( ph -> B e. CC ) |
|
| 3 | subaddd.3 | |- ( ph -> C e. CC ) |
|
| 4 | addsub4d.4 | |- ( ph -> D e. CC ) |
|
| 5 | 1 2 | addcld | |- ( ph -> ( A + B ) e. CC ) |
| 6 | 5 3 4 | subsubd | |- ( ph -> ( ( A + B ) - ( C - D ) ) = ( ( ( A + B ) - C ) + D ) ) |
| 7 | 1 2 3 | addsubd | |- ( ph -> ( ( A + B ) - C ) = ( ( A - C ) + B ) ) |
| 8 | 7 | oveq1d | |- ( ph -> ( ( ( A + B ) - C ) + D ) = ( ( ( A - C ) + B ) + D ) ) |
| 9 | 1 3 | subcld | |- ( ph -> ( A - C ) e. CC ) |
| 10 | 9 2 4 | addassd | |- ( ph -> ( ( ( A - C ) + B ) + D ) = ( ( A - C ) + ( B + D ) ) ) |
| 11 | 6 8 10 | 3eqtrd | |- ( ph -> ( ( A + B ) - ( C - D ) ) = ( ( A - C ) + ( B + D ) ) ) |