This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
Introduce the Axiom of Choice
ac6s5
Metamath Proof Explorer
Description: Generalization of the Axiom of Choice to proper classes. B is a
collection B ( x ) of nonempty, possible proper classes. Remark
after Theorem 10.46 of TakeutiZaring p. 98. (Contributed by NM , 27-Mar-2006)
Ref
Expression
Hypothesis
ac6s4.1
⊢ A ∈ V
Assertion
ac6s5
⊢ ∀ x ∈ A B ≠ ∅ → ∃ f ∀ x ∈ A f ⁡ x ∈ B
Proof
Step
Hyp
Ref
Expression
1
ac6s4.1
⊢ A ∈ V
2
1
ac6s4
⊢ ∀ x ∈ A B ≠ ∅ → ∃ f f Fn A ∧ ∀ x ∈ A f ⁡ x ∈ B
3
exsimpr
⊢ ∃ f f Fn A ∧ ∀ x ∈ A f ⁡ x ∈ B → ∃ f ∀ x ∈ A f ⁡ x ∈ B
4
2 3
syl
⊢ ∀ x ∈ A B ≠ ∅ → ∃ f ∀ x ∈ A f ⁡ x ∈ B