This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZFC (ZERMELO-FRAENKEL WITH CHOICE) SET THEORY
ZFC Set Theory - add the Axiom of Choice
Introduce the Axiom of Choice
ac6s4
Metamath Proof Explorer
Description: Generalization of the Axiom of Choice to proper classes. B is a
collection B ( x ) of nonempty, possible proper classes.
(Contributed by NM , 29-Sep-2006)
Ref
Expression
Hypothesis
ac6s4.1
⊢ A ∈ V
Assertion
ac6s4
⊢ ∀ x ∈ A B ≠ ∅ → ∃ f f Fn A ∧ ∀ x ∈ A f ⁡ x ∈ B
Proof
Step
Hyp
Ref
Expression
1
ac6s4.1
⊢ A ∈ V
2
n0
⊢ B ≠ ∅ ↔ ∃ y y ∈ B
3
2
ralbii
⊢ ∀ x ∈ A B ≠ ∅ ↔ ∀ x ∈ A ∃ y y ∈ B
4
eleq1
⊢ y = f ⁡ x → y ∈ B ↔ f ⁡ x ∈ B
5
1 4
ac6s2
⊢ ∀ x ∈ A ∃ y y ∈ B → ∃ f f Fn A ∧ ∀ x ∈ A f ⁡ x ∈ B
6
3 5
sylbi
⊢ ∀ x ∈ A B ≠ ∅ → ∃ f f Fn A ∧ ∀ x ∈ A f ⁡ x ∈ B