This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalization of the Axiom of Choice to proper classes. B is a collection B ( x ) of nonempty, possible proper classes. Remark after Theorem 10.46 of TakeutiZaring p. 98. (Contributed by NM, 27-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ac6s4.1 | ⊢ 𝐴 ∈ V | |
| Assertion | ac6s5 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6s4.1 | ⊢ 𝐴 ∈ V | |
| 2 | 1 | ac6s4 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 3 | exsimpr | ⊢ ( ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) | |
| 4 | 2 3 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃ 𝑓 ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) |