This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: The base set of a two-sided ideal as structure. (Contributed by AV, 20-Feb-2025)
|
|
Ref |
Expression |
|
Hypotheses |
2idlbas.i |
|
|
|
2idlbas.j |
|
|
|
2idlbas.b |
|
|
Assertion |
2idlbas |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2idlbas.i |
|
| 2 |
|
2idlbas.j |
|
| 3 |
|
2idlbas.b |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
4 5
|
2idlss |
|
| 7 |
2 4
|
ressbas2 |
|
| 8 |
1 6 7
|
3syl |
|
| 9 |
3 8
|
eqtr4id |
|