This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete as of 23-Jan-2020. Use mnd1id instead. The identity element of the trivial group. (Contributed by FL, 21-Jun-2010) (Proof shortened by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ablsn.1 | |- A e. _V |
|
| Assertion | gidsn | |- ( GId ` { <. <. A , A >. , A >. } ) = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsn.1 | |- A e. _V |
|
| 2 | 1 | grposnOLD | |- { <. <. A , A >. , A >. } e. GrpOp |
| 3 | opex | |- <. A , A >. e. _V |
|
| 4 | 3 | rnsnop | |- ran { <. <. A , A >. , A >. } = { A } |
| 5 | 4 | eqcomi | |- { A } = ran { <. <. A , A >. , A >. } |
| 6 | eqid | |- ( GId ` { <. <. A , A >. , A >. } ) = ( GId ` { <. <. A , A >. , A >. } ) |
|
| 7 | 5 6 | grpoidcl | |- ( { <. <. A , A >. , A >. } e. GrpOp -> ( GId ` { <. <. A , A >. , A >. } ) e. { A } ) |
| 8 | elsni | |- ( ( GId ` { <. <. A , A >. , A >. } ) e. { A } -> ( GId ` { <. <. A , A >. , A >. } ) = A ) |
|
| 9 | 2 7 8 | mp2b | |- ( GId ` { <. <. A , A >. , A >. } ) = A |