This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a Cartesian product with a singleton. (Contributed by Thierry Arnoux, 10-Apr-2020) (Proof shortened by JJ, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elsnxp | |- ( X e. V -> ( Z e. ( { X } X. A ) <-> E. y e. A Z = <. X , y >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp | |- ( Z e. ( { X } X. A ) <-> E. x E. y ( Z = <. x , y >. /\ ( x e. { X } /\ y e. A ) ) ) |
|
| 2 | df-rex | |- ( E. y e. A ( x e. { X } /\ Z = <. x , y >. ) <-> E. y ( y e. A /\ ( x e. { X } /\ Z = <. x , y >. ) ) ) |
|
| 3 | an13 | |- ( ( Z = <. x , y >. /\ ( x e. { X } /\ y e. A ) ) <-> ( y e. A /\ ( x e. { X } /\ Z = <. x , y >. ) ) ) |
|
| 4 | 3 | exbii | |- ( E. y ( Z = <. x , y >. /\ ( x e. { X } /\ y e. A ) ) <-> E. y ( y e. A /\ ( x e. { X } /\ Z = <. x , y >. ) ) ) |
| 5 | 2 4 | bitr4i | |- ( E. y e. A ( x e. { X } /\ Z = <. x , y >. ) <-> E. y ( Z = <. x , y >. /\ ( x e. { X } /\ y e. A ) ) ) |
| 6 | elsni | |- ( x e. { X } -> x = X ) |
|
| 7 | 6 | opeq1d | |- ( x e. { X } -> <. x , y >. = <. X , y >. ) |
| 8 | 7 | eqeq2d | |- ( x e. { X } -> ( Z = <. x , y >. <-> Z = <. X , y >. ) ) |
| 9 | 8 | biimpa | |- ( ( x e. { X } /\ Z = <. x , y >. ) -> Z = <. X , y >. ) |
| 10 | 9 | reximi | |- ( E. y e. A ( x e. { X } /\ Z = <. x , y >. ) -> E. y e. A Z = <. X , y >. ) |
| 11 | 5 10 | sylbir | |- ( E. y ( Z = <. x , y >. /\ ( x e. { X } /\ y e. A ) ) -> E. y e. A Z = <. X , y >. ) |
| 12 | 11 | exlimiv | |- ( E. x E. y ( Z = <. x , y >. /\ ( x e. { X } /\ y e. A ) ) -> E. y e. A Z = <. X , y >. ) |
| 13 | 1 12 | sylbi | |- ( Z e. ( { X } X. A ) -> E. y e. A Z = <. X , y >. ) |
| 14 | snidg | |- ( X e. V -> X e. { X } ) |
|
| 15 | opelxpi | |- ( ( X e. { X } /\ y e. A ) -> <. X , y >. e. ( { X } X. A ) ) |
|
| 16 | 14 15 | sylan | |- ( ( X e. V /\ y e. A ) -> <. X , y >. e. ( { X } X. A ) ) |
| 17 | eleq1 | |- ( Z = <. X , y >. -> ( Z e. ( { X } X. A ) <-> <. X , y >. e. ( { X } X. A ) ) ) |
|
| 18 | 16 17 | syl5ibrcom | |- ( ( X e. V /\ y e. A ) -> ( Z = <. X , y >. -> Z e. ( { X } X. A ) ) ) |
| 19 | 18 | rexlimdva | |- ( X e. V -> ( E. y e. A Z = <. X , y >. -> Z e. ( { X } X. A ) ) ) |
| 20 | 13 19 | impbid2 | |- ( X e. V -> ( Z e. ( { X } X. A ) <-> E. y e. A Z = <. X , y >. ) ) |