This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The weak universe closure of a set is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wunccl | |- ( A e. V -> ( wUniCl ` A ) e. WUni ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wuncval | |- ( A e. V -> ( wUniCl ` A ) = |^| { u e. WUni | A C_ u } ) |
|
| 2 | ssrab2 | |- { u e. WUni | A C_ u } C_ WUni |
|
| 3 | wunex | |- ( A e. V -> E. u e. WUni A C_ u ) |
|
| 4 | rabn0 | |- ( { u e. WUni | A C_ u } =/= (/) <-> E. u e. WUni A C_ u ) |
|
| 5 | 3 4 | sylibr | |- ( A e. V -> { u e. WUni | A C_ u } =/= (/) ) |
| 6 | intwun | |- ( ( { u e. WUni | A C_ u } C_ WUni /\ { u e. WUni | A C_ u } =/= (/) ) -> |^| { u e. WUni | A C_ u } e. WUni ) |
|
| 7 | 2 5 6 | sylancr | |- ( A e. V -> |^| { u e. WUni | A C_ u } e. WUni ) |
| 8 | 1 7 | eqeltrd | |- ( A e. V -> ( wUniCl ` A ) e. WUni ) |