This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two walks with identical sequences of vertices start and end at the same vertices. (Contributed by AV, 14-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wlksoneq1eq2 | |- ( ( F ( A ( WalksOn ` G ) B ) P /\ H ( C ( WalksOn ` G ) D ) P ) -> ( A = C /\ B = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | 1 | wlkonprop | |- ( F ( A ( WalksOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 3 | 1 | wlkonprop | |- ( H ( C ( WalksOn ` G ) D ) P -> ( ( G e. _V /\ C e. ( Vtx ` G ) /\ D e. ( Vtx ` G ) ) /\ ( H e. _V /\ P e. _V ) /\ ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) ) ) |
| 4 | simp2 | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` 0 ) = A ) |
|
| 5 | 4 | eqcomd | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> A = ( P ` 0 ) ) |
| 6 | simp2 | |- ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) -> ( P ` 0 ) = C ) |
|
| 7 | 5 6 | sylan9eqr | |- ( ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> A = C ) |
| 8 | simp3 | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` ( # ` F ) ) = B ) |
|
| 9 | 8 | eqcomd | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> B = ( P ` ( # ` F ) ) ) |
| 10 | 9 | adantl | |- ( ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> B = ( P ` ( # ` F ) ) ) |
| 11 | wlklenvm1 | |- ( H ( Walks ` G ) P -> ( # ` H ) = ( ( # ` P ) - 1 ) ) |
|
| 12 | wlklenvm1 | |- ( F ( Walks ` G ) P -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |
|
| 13 | eqtr3 | |- ( ( ( # ` F ) = ( ( # ` P ) - 1 ) /\ ( # ` H ) = ( ( # ` P ) - 1 ) ) -> ( # ` F ) = ( # ` H ) ) |
|
| 14 | 13 | fveq2d | |- ( ( ( # ` F ) = ( ( # ` P ) - 1 ) /\ ( # ` H ) = ( ( # ` P ) - 1 ) ) -> ( P ` ( # ` F ) ) = ( P ` ( # ` H ) ) ) |
| 15 | 14 | ex | |- ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( ( # ` H ) = ( ( # ` P ) - 1 ) -> ( P ` ( # ` F ) ) = ( P ` ( # ` H ) ) ) ) |
| 16 | 12 15 | syl | |- ( F ( Walks ` G ) P -> ( ( # ` H ) = ( ( # ` P ) - 1 ) -> ( P ` ( # ` F ) ) = ( P ` ( # ` H ) ) ) ) |
| 17 | 16 | 3ad2ant1 | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( # ` H ) = ( ( # ` P ) - 1 ) -> ( P ` ( # ` F ) ) = ( P ` ( # ` H ) ) ) ) |
| 18 | 17 | com12 | |- ( ( # ` H ) = ( ( # ` P ) - 1 ) -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` ( # ` F ) ) = ( P ` ( # ` H ) ) ) ) |
| 19 | 11 18 | syl | |- ( H ( Walks ` G ) P -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` ( # ` F ) ) = ( P ` ( # ` H ) ) ) ) |
| 20 | 19 | 3ad2ant1 | |- ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` ( # ` F ) ) = ( P ` ( # ` H ) ) ) ) |
| 21 | 20 | imp | |- ( ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( P ` ( # ` F ) ) = ( P ` ( # ` H ) ) ) |
| 22 | simpl3 | |- ( ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( P ` ( # ` H ) ) = D ) |
|
| 23 | 10 21 22 | 3eqtrd | |- ( ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> B = D ) |
| 24 | 7 23 | jca | |- ( ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( A = C /\ B = D ) ) |
| 25 | 24 | ex | |- ( ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( A = C /\ B = D ) ) ) |
| 26 | 25 | 3ad2ant3 | |- ( ( ( G e. _V /\ C e. ( Vtx ` G ) /\ D e. ( Vtx ` G ) ) /\ ( H e. _V /\ P e. _V ) /\ ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) ) -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( A = C /\ B = D ) ) ) |
| 27 | 26 | com12 | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( ( G e. _V /\ C e. ( Vtx ` G ) /\ D e. ( Vtx ` G ) ) /\ ( H e. _V /\ P e. _V ) /\ ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) ) -> ( A = C /\ B = D ) ) ) |
| 28 | 27 | 3ad2ant3 | |- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( ( G e. _V /\ C e. ( Vtx ` G ) /\ D e. ( Vtx ` G ) ) /\ ( H e. _V /\ P e. _V ) /\ ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) ) -> ( A = C /\ B = D ) ) ) |
| 29 | 28 | imp | |- ( ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( ( G e. _V /\ C e. ( Vtx ` G ) /\ D e. ( Vtx ` G ) ) /\ ( H e. _V /\ P e. _V ) /\ ( H ( Walks ` G ) P /\ ( P ` 0 ) = C /\ ( P ` ( # ` H ) ) = D ) ) ) -> ( A = C /\ B = D ) ) |
| 30 | 2 3 29 | syl2an | |- ( ( F ( A ( WalksOn ` G ) B ) P /\ H ( C ( WalksOn ` G ) D ) P ) -> ( A = C /\ B = D ) ) |