This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is a walk between two vertices A and B at least of length 1, then the start vertex A is incident with an edge. (Contributed by AV, 4-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wlkonl1iedg.i | |- I = ( iEdg ` G ) |
|
| Assertion | wlkonl1iedg | |- ( ( F ( A ( WalksOn ` G ) B ) P /\ ( # ` F ) =/= 0 ) -> E. e e. ran I A e. e ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkonl1iedg.i | |- I = ( iEdg ` G ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | 2 | wlkonprop | |- ( F ( A ( WalksOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 4 | fveq2 | |- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
|
| 5 | fv0p1e1 | |- ( k = 0 -> ( P ` ( k + 1 ) ) = ( P ` 1 ) ) |
|
| 6 | 4 5 | preq12d | |- ( k = 0 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 0 ) , ( P ` 1 ) } ) |
| 7 | 6 | sseq1d | |- ( k = 0 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e <-> { ( P ` 0 ) , ( P ` 1 ) } C_ e ) ) |
| 8 | 7 | rexbidv | |- ( k = 0 -> ( E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e <-> E. e e. ran I { ( P ` 0 ) , ( P ` 1 ) } C_ e ) ) |
| 9 | 1 | wlkvtxiedg | |- ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) |
| 10 | 9 | adantr | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) |
| 11 | 10 | adantr | |- ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) /\ ( # ` F ) =/= 0 ) -> A. k e. ( 0 ..^ ( # ` F ) ) E. e e. ran I { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ e ) |
| 12 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 13 | elnnne0 | |- ( ( # ` F ) e. NN <-> ( ( # ` F ) e. NN0 /\ ( # ` F ) =/= 0 ) ) |
|
| 14 | 13 | simplbi2 | |- ( ( # ` F ) e. NN0 -> ( ( # ` F ) =/= 0 -> ( # ` F ) e. NN ) ) |
| 15 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( # ` F ) ) <-> ( # ` F ) e. NN ) |
|
| 16 | 14 15 | imbitrrdi | |- ( ( # ` F ) e. NN0 -> ( ( # ` F ) =/= 0 -> 0 e. ( 0 ..^ ( # ` F ) ) ) ) |
| 17 | 12 16 | syl | |- ( F ( Walks ` G ) P -> ( ( # ` F ) =/= 0 -> 0 e. ( 0 ..^ ( # ` F ) ) ) ) |
| 18 | 17 | adantr | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( ( # ` F ) =/= 0 -> 0 e. ( 0 ..^ ( # ` F ) ) ) ) |
| 19 | 18 | imp | |- ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) /\ ( # ` F ) =/= 0 ) -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
| 20 | 8 11 19 | rspcdva | |- ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) /\ ( # ` F ) =/= 0 ) -> E. e e. ran I { ( P ` 0 ) , ( P ` 1 ) } C_ e ) |
| 21 | fvex | |- ( P ` 0 ) e. _V |
|
| 22 | fvex | |- ( P ` 1 ) e. _V |
|
| 23 | 21 22 | prss | |- ( ( ( P ` 0 ) e. e /\ ( P ` 1 ) e. e ) <-> { ( P ` 0 ) , ( P ` 1 ) } C_ e ) |
| 24 | eleq1 | |- ( ( P ` 0 ) = A -> ( ( P ` 0 ) e. e <-> A e. e ) ) |
|
| 25 | ax-1 | |- ( A e. e -> ( ( P ` 1 ) e. e -> A e. e ) ) |
|
| 26 | 24 25 | biimtrdi | |- ( ( P ` 0 ) = A -> ( ( P ` 0 ) e. e -> ( ( P ` 1 ) e. e -> A e. e ) ) ) |
| 27 | 26 | adantl | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( ( P ` 0 ) e. e -> ( ( P ` 1 ) e. e -> A e. e ) ) ) |
| 28 | 27 | impd | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( ( ( P ` 0 ) e. e /\ ( P ` 1 ) e. e ) -> A e. e ) ) |
| 29 | 23 28 | biimtrrid | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( { ( P ` 0 ) , ( P ` 1 ) } C_ e -> A e. e ) ) |
| 30 | 29 | reximdv | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( E. e e. ran I { ( P ` 0 ) , ( P ` 1 ) } C_ e -> E. e e. ran I A e. e ) ) |
| 31 | 30 | adantr | |- ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) /\ ( # ` F ) =/= 0 ) -> ( E. e e. ran I { ( P ` 0 ) , ( P ` 1 ) } C_ e -> E. e e. ran I A e. e ) ) |
| 32 | 20 31 | mpd | |- ( ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) /\ ( # ` F ) =/= 0 ) -> E. e e. ran I A e. e ) |
| 33 | 32 | ex | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A ) -> ( ( # ` F ) =/= 0 -> E. e e. ran I A e. e ) ) |
| 34 | 33 | 3adant3 | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( # ` F ) =/= 0 -> E. e e. ran I A e. e ) ) |
| 35 | 34 | 3ad2ant3 | |- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( # ` F ) =/= 0 -> E. e e. ran I A e. e ) ) |
| 36 | 3 35 | syl | |- ( F ( A ( WalksOn ` G ) B ) P -> ( ( # ` F ) =/= 0 -> E. e e. ran I A e. e ) ) |
| 37 | 36 | imp | |- ( ( F ( A ( WalksOn ` G ) B ) P /\ ( # ` F ) =/= 0 ) -> E. e e. ran I A e. e ) |