This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The length of a walk between two different vertices is not 0 (i.e. is at least 1). (Contributed by AV, 3-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wlkon2n0 | |- ( ( F ( A ( WalksOn ` G ) B ) P /\ A =/= B ) -> ( # ` F ) =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | 1 | wlkonprop | |- ( F ( A ( WalksOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 3 | fveqeq2 | |- ( ( # ` F ) = 0 -> ( ( P ` ( # ` F ) ) = B <-> ( P ` 0 ) = B ) ) |
|
| 4 | 3 | anbi2d | |- ( ( # ` F ) = 0 -> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) <-> ( ( P ` 0 ) = A /\ ( P ` 0 ) = B ) ) ) |
| 5 | eqtr2 | |- ( ( ( P ` 0 ) = A /\ ( P ` 0 ) = B ) -> A = B ) |
|
| 6 | nne | |- ( -. A =/= B <-> A = B ) |
|
| 7 | 5 6 | sylibr | |- ( ( ( P ` 0 ) = A /\ ( P ` 0 ) = B ) -> -. A =/= B ) |
| 8 | 4 7 | biimtrdi | |- ( ( # ` F ) = 0 -> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> -. A =/= B ) ) |
| 9 | 8 | com12 | |- ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( # ` F ) = 0 -> -. A =/= B ) ) |
| 10 | 9 | 3adant1 | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( # ` F ) = 0 -> -. A =/= B ) ) |
| 11 | 10 | 3ad2ant3 | |- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( # ` F ) = 0 -> -. A =/= B ) ) |
| 12 | 2 11 | syl | |- ( F ( A ( WalksOn ` G ) B ) P -> ( ( # ` F ) = 0 -> -. A =/= B ) ) |
| 13 | 12 | necon2ad | |- ( F ( A ( WalksOn ` G ) B ) P -> ( A =/= B -> ( # ` F ) =/= 0 ) ) |
| 14 | 13 | imp | |- ( ( F ( A ( WalksOn ` G ) B ) P /\ A =/= B ) -> ( # ` F ) =/= 0 ) |