This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 23-Jun-2018) (Revised by AV, 1-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkcomp.v | |- V = ( Vtx ` G ) |
|
| wlkcomp.i | |- I = ( iEdg ` G ) |
||
| wlkcomp.1 | |- F = ( 1st ` W ) |
||
| wlkcomp.2 | |- P = ( 2nd ` W ) |
||
| Assertion | wlkcomp | |- ( ( G e. U /\ W e. ( S X. T ) ) -> ( W e. ( Walks ` G ) <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkcomp.v | |- V = ( Vtx ` G ) |
|
| 2 | wlkcomp.i | |- I = ( iEdg ` G ) |
|
| 3 | wlkcomp.1 | |- F = ( 1st ` W ) |
|
| 4 | wlkcomp.2 | |- P = ( 2nd ` W ) |
|
| 5 | 3 | eqcomi | |- ( 1st ` W ) = F |
| 6 | 4 | eqcomi | |- ( 2nd ` W ) = P |
| 7 | 5 6 | pm3.2i | |- ( ( 1st ` W ) = F /\ ( 2nd ` W ) = P ) |
| 8 | eqop | |- ( W e. ( S X. T ) -> ( W = <. F , P >. <-> ( ( 1st ` W ) = F /\ ( 2nd ` W ) = P ) ) ) |
|
| 9 | 7 8 | mpbiri | |- ( W e. ( S X. T ) -> W = <. F , P >. ) |
| 10 | 9 | eleq1d | |- ( W e. ( S X. T ) -> ( W e. ( Walks ` G ) <-> <. F , P >. e. ( Walks ` G ) ) ) |
| 11 | df-br | |- ( F ( Walks ` G ) P <-> <. F , P >. e. ( Walks ` G ) ) |
|
| 12 | 10 11 | bitr4di | |- ( W e. ( S X. T ) -> ( W e. ( Walks ` G ) <-> F ( Walks ` G ) P ) ) |
| 13 | 1 2 | iswlkg | |- ( G e. U -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 14 | 12 13 | sylan9bbr | |- ( ( G e. U /\ W e. ( S X. T ) ) -> ( W e. ( Walks ` G ) <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |