This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications for the properties of the components of a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018) (Revised by AV, 2-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkcomp.v | |- V = ( Vtx ` G ) |
|
| wlkcomp.i | |- I = ( iEdg ` G ) |
||
| wlkcomp.1 | |- F = ( 1st ` W ) |
||
| wlkcomp.2 | |- P = ( 2nd ` W ) |
||
| Assertion | wlkcompim | |- ( W e. ( Walks ` G ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkcomp.v | |- V = ( Vtx ` G ) |
|
| 2 | wlkcomp.i | |- I = ( iEdg ` G ) |
|
| 3 | wlkcomp.1 | |- F = ( 1st ` W ) |
|
| 4 | wlkcomp.2 | |- P = ( 2nd ` W ) |
|
| 5 | elfvex | |- ( W e. ( Walks ` G ) -> G e. _V ) |
|
| 6 | wlkcpr | |- ( W e. ( Walks ` G ) <-> ( 1st ` W ) ( Walks ` G ) ( 2nd ` W ) ) |
|
| 7 | wlkvv | |- ( ( 1st ` W ) ( Walks ` G ) ( 2nd ` W ) -> W e. ( _V X. _V ) ) |
|
| 8 | 6 7 | sylbi | |- ( W e. ( Walks ` G ) -> W e. ( _V X. _V ) ) |
| 9 | 1 2 3 4 | wlkcomp | |- ( ( G e. _V /\ W e. ( _V X. _V ) ) -> ( W e. ( Walks ` G ) <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 10 | 9 | biimpcd | |- ( W e. ( Walks ` G ) -> ( ( G e. _V /\ W e. ( _V X. _V ) ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 11 | 5 8 10 | mp2and | |- ( W e. ( Walks ` G ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |