This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-Ordered Induction Schema. If a property passes from all elements less than y of a well-ordered class A to y itself (induction hypothesis), then the property holds for all elements of A . (Contributed by Scott Fenton, 11-Feb-2011) (Proof shortened by Scott Fenton, 17-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wfisg.1 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) |
|
| Assertion | wfisg | |- ( ( R We A /\ R Se A ) -> A. y e. A ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfisg.1 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) |
|
| 2 | wefr | |- ( R We A -> R Fr A ) |
|
| 3 | 2 | adantr | |- ( ( R We A /\ R Se A ) -> R Fr A ) |
| 4 | weso | |- ( R We A -> R Or A ) |
|
| 5 | sopo | |- ( R Or A -> R Po A ) |
|
| 6 | 4 5 | syl | |- ( R We A -> R Po A ) |
| 7 | 6 | adantr | |- ( ( R We A /\ R Se A ) -> R Po A ) |
| 8 | simpr | |- ( ( R We A /\ R Se A ) -> R Se A ) |
|
| 9 | 1 | adantl | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ y e. A ) -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) |
| 10 | 9 | frpoinsg | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> A. y e. A ph ) |
| 11 | 3 7 8 10 | syl3anc | |- ( ( R We A /\ R Se A ) -> A. y e. A ph ) |