This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Well-ordered induction
wfisg
Metamath Proof Explorer
Description: Well-Ordered Induction Schema. If a property passes from all elements
less than y of a well-ordered class A to y itself (induction
hypothesis), then the property holds for all elements of A .
(Contributed by Scott Fenton , 11-Feb-2011) (Proof shortened by Scott
Fenton , 17-Nov-2024)
Ref
Expression
Hypothesis
wfisg.1
⊢ y ∈ A → ∀ z ∈ Pred R A y [ ˙ z / y ] ˙ φ → φ
Assertion
wfisg
⊢ R We A ∧ R Se A → ∀ y ∈ A φ
Proof
Step
Hyp
Ref
Expression
1
wfisg.1
⊢ y ∈ A → ∀ z ∈ Pred R A y [ ˙ z / y ] ˙ φ → φ
2
wefr
⊢ R We A → R Fr A
3
2
adantr
⊢ R We A ∧ R Se A → R Fr A
4
weso
⊢ R We A → R Or A
5
sopo
⊢ R Or A → R Po A
6
4 5
syl
⊢ R We A → R Po A
7
6
adantr
⊢ R We A ∧ R Se A → R Po A
8
simpr
⊢ R We A ∧ R Se A → R Se A
9
1
adantl
⊢ R Fr A ∧ R Po A ∧ R Se A ∧ y ∈ A → ∀ z ∈ Pred R A y [ ˙ z / y ] ˙ φ → φ
10
9
frpoinsg
⊢ R Fr A ∧ R Po A ∧ R Se A → ∀ y ∈ A φ
11
3 7 8 10
syl3anc
⊢ R We A ∧ R Se A → ∀ y ∈ A φ