This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of a vertex in the null graph is zero (or anything else), because there are no vertices. (Contributed by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | vtxdgf.v | |- V = ( Vtx ` G ) |
|
| Assertion | vtxdg0v | |- ( ( G = (/) /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgf.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | eleq2i | |- ( U e. V <-> U e. ( Vtx ` G ) ) |
| 3 | fveq2 | |- ( G = (/) -> ( Vtx ` G ) = ( Vtx ` (/) ) ) |
|
| 4 | vtxval0 | |- ( Vtx ` (/) ) = (/) |
|
| 5 | 3 4 | eqtrdi | |- ( G = (/) -> ( Vtx ` G ) = (/) ) |
| 6 | 5 | eleq2d | |- ( G = (/) -> ( U e. ( Vtx ` G ) <-> U e. (/) ) ) |
| 7 | 2 6 | bitrid | |- ( G = (/) -> ( U e. V <-> U e. (/) ) ) |
| 8 | noel | |- -. U e. (/) |
|
| 9 | 8 | pm2.21i | |- ( U e. (/) -> ( ( VtxDeg ` G ) ` U ) = 0 ) |
| 10 | 7 9 | biimtrdi | |- ( G = (/) -> ( U e. V -> ( ( VtxDeg ` G ) ` U ) = 0 ) ) |
| 11 | 10 | imp | |- ( ( G = (/) /\ U e. V ) -> ( ( VtxDeg ` G ) ` U ) = 0 ) |