This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Justification theorem for an ordered pair definition that works for any classes, including proper classes. This is a possible definition implied by the footnote in Jech p. 78, which says, "The sophisticated reader will not object to our use of a pair of classes." (Contributed by NM, 28-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opthprc | |- ( ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) = ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) <-> ( A = C /\ B = D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | |- ( ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) = ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) -> ( <. x , (/) >. e. ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) <-> <. x , (/) >. e. ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) ) ) |
|
| 2 | 0ex | |- (/) e. _V |
|
| 3 | 2 | snid | |- (/) e. { (/) } |
| 4 | opelxp | |- ( <. x , (/) >. e. ( A X. { (/) } ) <-> ( x e. A /\ (/) e. { (/) } ) ) |
|
| 5 | 3 4 | mpbiran2 | |- ( <. x , (/) >. e. ( A X. { (/) } ) <-> x e. A ) |
| 6 | opelxp | |- ( <. x , (/) >. e. ( B X. { { (/) } } ) <-> ( x e. B /\ (/) e. { { (/) } } ) ) |
|
| 7 | 0nep0 | |- (/) =/= { (/) } |
|
| 8 | 2 | elsn | |- ( (/) e. { { (/) } } <-> (/) = { (/) } ) |
| 9 | 7 8 | nemtbir | |- -. (/) e. { { (/) } } |
| 10 | 9 | bianfi | |- ( (/) e. { { (/) } } <-> ( x e. B /\ (/) e. { { (/) } } ) ) |
| 11 | 6 10 | bitr4i | |- ( <. x , (/) >. e. ( B X. { { (/) } } ) <-> (/) e. { { (/) } } ) |
| 12 | 5 11 | orbi12i | |- ( ( <. x , (/) >. e. ( A X. { (/) } ) \/ <. x , (/) >. e. ( B X. { { (/) } } ) ) <-> ( x e. A \/ (/) e. { { (/) } } ) ) |
| 13 | elun | |- ( <. x , (/) >. e. ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) <-> ( <. x , (/) >. e. ( A X. { (/) } ) \/ <. x , (/) >. e. ( B X. { { (/) } } ) ) ) |
|
| 14 | 9 | biorfri | |- ( x e. A <-> ( x e. A \/ (/) e. { { (/) } } ) ) |
| 15 | 12 13 14 | 3bitr4ri | |- ( x e. A <-> <. x , (/) >. e. ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) ) |
| 16 | opelxp | |- ( <. x , (/) >. e. ( C X. { (/) } ) <-> ( x e. C /\ (/) e. { (/) } ) ) |
|
| 17 | 3 16 | mpbiran2 | |- ( <. x , (/) >. e. ( C X. { (/) } ) <-> x e. C ) |
| 18 | opelxp | |- ( <. x , (/) >. e. ( D X. { { (/) } } ) <-> ( x e. D /\ (/) e. { { (/) } } ) ) |
|
| 19 | 9 | bianfi | |- ( (/) e. { { (/) } } <-> ( x e. D /\ (/) e. { { (/) } } ) ) |
| 20 | 18 19 | bitr4i | |- ( <. x , (/) >. e. ( D X. { { (/) } } ) <-> (/) e. { { (/) } } ) |
| 21 | 17 20 | orbi12i | |- ( ( <. x , (/) >. e. ( C X. { (/) } ) \/ <. x , (/) >. e. ( D X. { { (/) } } ) ) <-> ( x e. C \/ (/) e. { { (/) } } ) ) |
| 22 | elun | |- ( <. x , (/) >. e. ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) <-> ( <. x , (/) >. e. ( C X. { (/) } ) \/ <. x , (/) >. e. ( D X. { { (/) } } ) ) ) |
|
| 23 | 9 | biorfri | |- ( x e. C <-> ( x e. C \/ (/) e. { { (/) } } ) ) |
| 24 | 21 22 23 | 3bitr4ri | |- ( x e. C <-> <. x , (/) >. e. ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) ) |
| 25 | 1 15 24 | 3bitr4g | |- ( ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) = ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) -> ( x e. A <-> x e. C ) ) |
| 26 | 25 | eqrdv | |- ( ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) = ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) -> A = C ) |
| 27 | eleq2 | |- ( ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) = ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) -> ( <. x , { (/) } >. e. ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) <-> <. x , { (/) } >. e. ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) ) ) |
|
| 28 | opelxp | |- ( <. x , { (/) } >. e. ( A X. { (/) } ) <-> ( x e. A /\ { (/) } e. { (/) } ) ) |
|
| 29 | snex | |- { (/) } e. _V |
|
| 30 | 29 | elsn | |- ( { (/) } e. { (/) } <-> { (/) } = (/) ) |
| 31 | eqcom | |- ( { (/) } = (/) <-> (/) = { (/) } ) |
|
| 32 | 30 31 | bitri | |- ( { (/) } e. { (/) } <-> (/) = { (/) } ) |
| 33 | 7 32 | nemtbir | |- -. { (/) } e. { (/) } |
| 34 | 33 | bianfi | |- ( { (/) } e. { (/) } <-> ( x e. A /\ { (/) } e. { (/) } ) ) |
| 35 | 28 34 | bitr4i | |- ( <. x , { (/) } >. e. ( A X. { (/) } ) <-> { (/) } e. { (/) } ) |
| 36 | 29 | snid | |- { (/) } e. { { (/) } } |
| 37 | opelxp | |- ( <. x , { (/) } >. e. ( B X. { { (/) } } ) <-> ( x e. B /\ { (/) } e. { { (/) } } ) ) |
|
| 38 | 36 37 | mpbiran2 | |- ( <. x , { (/) } >. e. ( B X. { { (/) } } ) <-> x e. B ) |
| 39 | 35 38 | orbi12i | |- ( ( <. x , { (/) } >. e. ( A X. { (/) } ) \/ <. x , { (/) } >. e. ( B X. { { (/) } } ) ) <-> ( { (/) } e. { (/) } \/ x e. B ) ) |
| 40 | elun | |- ( <. x , { (/) } >. e. ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) <-> ( <. x , { (/) } >. e. ( A X. { (/) } ) \/ <. x , { (/) } >. e. ( B X. { { (/) } } ) ) ) |
|
| 41 | 33 | biorfi | |- ( x e. B <-> ( { (/) } e. { (/) } \/ x e. B ) ) |
| 42 | 39 40 41 | 3bitr4ri | |- ( x e. B <-> <. x , { (/) } >. e. ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) ) |
| 43 | opelxp | |- ( <. x , { (/) } >. e. ( C X. { (/) } ) <-> ( x e. C /\ { (/) } e. { (/) } ) ) |
|
| 44 | 33 | bianfi | |- ( { (/) } e. { (/) } <-> ( x e. C /\ { (/) } e. { (/) } ) ) |
| 45 | 43 44 | bitr4i | |- ( <. x , { (/) } >. e. ( C X. { (/) } ) <-> { (/) } e. { (/) } ) |
| 46 | opelxp | |- ( <. x , { (/) } >. e. ( D X. { { (/) } } ) <-> ( x e. D /\ { (/) } e. { { (/) } } ) ) |
|
| 47 | 36 46 | mpbiran2 | |- ( <. x , { (/) } >. e. ( D X. { { (/) } } ) <-> x e. D ) |
| 48 | 45 47 | orbi12i | |- ( ( <. x , { (/) } >. e. ( C X. { (/) } ) \/ <. x , { (/) } >. e. ( D X. { { (/) } } ) ) <-> ( { (/) } e. { (/) } \/ x e. D ) ) |
| 49 | elun | |- ( <. x , { (/) } >. e. ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) <-> ( <. x , { (/) } >. e. ( C X. { (/) } ) \/ <. x , { (/) } >. e. ( D X. { { (/) } } ) ) ) |
|
| 50 | 33 | biorfi | |- ( x e. D <-> ( { (/) } e. { (/) } \/ x e. D ) ) |
| 51 | 48 49 50 | 3bitr4ri | |- ( x e. D <-> <. x , { (/) } >. e. ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) ) |
| 52 | 27 42 51 | 3bitr4g | |- ( ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) = ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) -> ( x e. B <-> x e. D ) ) |
| 53 | 52 | eqrdv | |- ( ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) = ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) -> B = D ) |
| 54 | 26 53 | jca | |- ( ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) = ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) -> ( A = C /\ B = D ) ) |
| 55 | xpeq1 | |- ( A = C -> ( A X. { (/) } ) = ( C X. { (/) } ) ) |
|
| 56 | xpeq1 | |- ( B = D -> ( B X. { { (/) } } ) = ( D X. { { (/) } } ) ) |
|
| 57 | uneq12 | |- ( ( ( A X. { (/) } ) = ( C X. { (/) } ) /\ ( B X. { { (/) } } ) = ( D X. { { (/) } } ) ) -> ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) = ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) ) |
|
| 58 | 55 56 57 | syl2an | |- ( ( A = C /\ B = D ) -> ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) = ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) ) |
| 59 | 54 58 | impbii | |- ( ( ( A X. { (/) } ) u. ( B X. { { (/) } } ) ) = ( ( C X. { (/) } ) u. ( D X. { { (/) } } ) ) <-> ( A = C /\ B = D ) ) |