This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
vtoclegft
Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. (Closed theorem
version of vtoclef .) (Contributed by NM , 7-Nov-2005) (Revised by Mario Carneiro , 11-Oct-2016) (Proof shortened by Wolf Lammen , 26-Jan-2025)
Ref
Expression
Assertion
vtoclegft
⊢ A ∈ B ∧ Ⅎ x φ ∧ ∀ x x = A → φ → φ
Proof
Step
Hyp
Ref
Expression
1
biidd
⊢ x = A → φ ↔ φ
2
1
ax-gen
⊢ ∀ x x = A → φ ↔ φ
3
ceqsalt
⊢ Ⅎ x φ ∧ ∀ x x = A → φ ↔ φ ∧ A ∈ B → ∀ x x = A → φ ↔ φ
4
2 3
mp3an2
⊢ Ⅎ x φ ∧ A ∈ B → ∀ x x = A → φ ↔ φ
5
4
ancoms
⊢ A ∈ B ∧ Ⅎ x φ → ∀ x x = A → φ ↔ φ
6
5
biimpd
⊢ A ∈ B ∧ Ⅎ x φ → ∀ x x = A → φ → φ
7
6
3impia
⊢ A ∈ B ∧ Ⅎ x φ ∧ ∀ x x = A → φ → φ