This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop ) is a singleton of a singleton. (Contributed by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uspgrloopvtx.g | |- G = <. V , { <. A , { N } >. } >. |
|
| Assertion | uspgrloopiedg | |- ( ( V e. W /\ A e. X ) -> ( iEdg ` G ) = { <. A , { N } >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrloopvtx.g | |- G = <. V , { <. A , { N } >. } >. |
|
| 2 | 1 | fveq2i | |- ( iEdg ` G ) = ( iEdg ` <. V , { <. A , { N } >. } >. ) |
| 3 | snex | |- { <. A , { N } >. } e. _V |
|
| 4 | 3 | a1i | |- ( A e. X -> { <. A , { N } >. } e. _V ) |
| 5 | opiedgfv | |- ( ( V e. W /\ { <. A , { N } >. } e. _V ) -> ( iEdg ` <. V , { <. A , { N } >. } >. ) = { <. A , { N } >. } ) |
|
| 6 | 4 5 | sylan2 | |- ( ( V e. W /\ A e. X ) -> ( iEdg ` <. V , { <. A , { N } >. } >. ) = { <. A , { N } >. } ) |
| 7 | 2 6 | eqtrid | |- ( ( V e. W /\ A e. X ) -> ( iEdg ` G ) = { <. A , { N } >. } ) |