This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Vertex degree
uspgrloopiedg
Metamath Proof Explorer
Description: The set of edges in a graph (simple pseudograph) with one edge which is
a loop (see uspgr1v1eop ) is a singleton of a singleton. (Contributed by AV , 21-Feb-2021)
Ref
Expression
Hypothesis
uspgrloopvtx.g
⊢ G = V A N
Assertion
uspgrloopiedg
⊢ V ∈ W ∧ A ∈ X → iEdg ⁡ G = A N
Proof
Step
Hyp
Ref
Expression
1
uspgrloopvtx.g
⊢ G = V A N
2
1
fveq2i
⊢ iEdg ⁡ G = iEdg ⁡ V A N
3
snex
⊢ A N ∈ V
4
3
a1i
⊢ A ∈ X → A N ∈ V
5
opiedgfv
⊢ V ∈ W ∧ A N ∈ V → iEdg ⁡ V A N = A N
6
4 5
sylan2
⊢ V ∈ W ∧ A ∈ X → iEdg ⁡ V A N = A N
7
2 6
eqtrid
⊢ V ∈ W ∧ A ∈ X → iEdg ⁡ G = A N