This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof for usgredgleord based on usgriedgleord . In a simple graph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 18-Oct-2020) (Proof shortened by AV, 5-May-2021) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredgleord.v | |- V = ( Vtx ` G ) |
|
| usgredgleord.e | |- E = ( Edg ` G ) |
||
| Assertion | usgredgleordALT | |- ( ( G e. USGraph /\ N e. V ) -> ( # ` { e e. E | N e. e } ) <_ ( # ` V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredgleord.v | |- V = ( Vtx ` G ) |
|
| 2 | usgredgleord.e | |- E = ( Edg ` G ) |
|
| 3 | fvex | |- ( iEdg ` G ) e. _V |
|
| 4 | 3 | dmex | |- dom ( iEdg ` G ) e. _V |
| 5 | 4 | rabex | |- { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } e. _V |
| 6 | 5 | a1i | |- ( ( G e. USGraph /\ N e. V ) -> { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } e. _V ) |
| 7 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 8 | eqid | |- { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } = { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } |
|
| 9 | eleq2w | |- ( e = f -> ( N e. e <-> N e. f ) ) |
|
| 10 | 9 | cbvrabv | |- { e e. E | N e. e } = { f e. E | N e. f } |
| 11 | eqid | |- ( y e. { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } |-> ( ( iEdg ` G ) ` y ) ) = ( y e. { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } |-> ( ( iEdg ` G ) ` y ) ) |
|
| 12 | 2 7 1 8 10 11 | usgredgedg | |- ( ( G e. USGraph /\ N e. V ) -> ( y e. { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } |-> ( ( iEdg ` G ) ` y ) ) : { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } -1-1-onto-> { e e. E | N e. e } ) |
| 13 | 6 12 | hasheqf1od | |- ( ( G e. USGraph /\ N e. V ) -> ( # ` { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } ) = ( # ` { e e. E | N e. e } ) ) |
| 14 | 1 7 | usgriedgleord | |- ( ( G e. USGraph /\ N e. V ) -> ( # ` { x e. dom ( iEdg ` G ) | N e. ( ( iEdg ` G ) ` x ) } ) <_ ( # ` V ) ) |
| 15 | 13 14 | eqbrtrrd | |- ( ( G e. USGraph /\ N e. V ) -> ( # ` { e e. E | N e. e } ) <_ ( # ` V ) ) |