This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Undirected graphs
Examples for graphs
usgr0e
Metamath Proof Explorer
Description: The empty graph, with vertices but no edges, is a simple graph.
(Contributed by Alexander van der Vekens , 10-Aug-2017) (Revised by AV , 16-Oct-2020) (Proof shortened by AV , 25-Nov-2020)
Ref
Expression
Hypotheses
usgr0e.g
⊢ φ → G ∈ W
usgr0e.e
⊢ φ → iEdg ⁡ G = ∅
Assertion
usgr0e
⊢ φ → G ∈ USGraph
Proof
Step
Hyp
Ref
Expression
1
usgr0e.g
⊢ φ → G ∈ W
2
usgr0e.e
⊢ φ → iEdg ⁡ G = ∅
3
2
f10d
⊢ φ → iEdg ⁡ G : dom ⁡ iEdg ⁡ G ⟶ 1-1 x ∈ 𝒫 Vtx ⁡ G ∖ ∅ | x = 2
4
eqid
⊢ Vtx ⁡ G = Vtx ⁡ G
5
eqid
⊢ iEdg ⁡ G = iEdg ⁡ G
6
4 5
isusgr
⊢ G ∈ W → G ∈ USGraph ↔ iEdg ⁡ G : dom ⁡ iEdg ⁡ G ⟶ 1-1 x ∈ 𝒫 Vtx ⁡ G ∖ ∅ | x = 2
7
1 6
syl
⊢ φ → G ∈ USGraph ↔ iEdg ⁡ G : dom ⁡ iEdg ⁡ G ⟶ 1-1 x ∈ 𝒫 Vtx ⁡ G ∖ ∅ | x = 2
8
3 7
mpbird
⊢ φ → G ∈ USGraph