This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property " <. F , P >. is an Eulerian path on the pseudograph G ". (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 3-May-2015) (Revised by AV, 18-Feb-2021) (Revised by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eupths.i | |- I = ( iEdg ` G ) |
|
| upgriseupth.v | |- V = ( Vtx ` G ) |
||
| Assertion | upgriseupth | |- ( G e. UPGraph -> ( F ( EulerPaths ` G ) P <-> ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupths.i | |- I = ( iEdg ` G ) |
|
| 2 | upgriseupth.v | |- V = ( Vtx ` G ) |
|
| 3 | 1 | iseupthf1o | |- ( F ( EulerPaths ` G ) P <-> ( F ( Walks ` G ) P /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) ) |
| 4 | 3 | a1i | |- ( G e. UPGraph -> ( F ( EulerPaths ` G ) P <-> ( F ( Walks ` G ) P /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) ) ) |
| 5 | 2 1 | upgriswlk | |- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 6 | 5 | anbi1d | |- ( G e. UPGraph -> ( ( F ( Walks ` G ) P /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) ) ) |
| 7 | simpr | |- ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) |
|
| 8 | simpl2 | |- ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) -> P : ( 0 ... ( # ` F ) ) --> V ) |
|
| 9 | simpl3 | |- ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
|
| 10 | 7 8 9 | 3jca | |- ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 11 | f1of | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
|
| 12 | iswrdi | |- ( F : ( 0 ..^ ( # ` F ) ) --> dom I -> F e. Word dom I ) |
|
| 13 | 11 12 | syl | |- ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I -> F e. Word dom I ) |
| 14 | 13 | 3anim1i | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 15 | simp1 | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) |
|
| 16 | 14 15 | jca | |- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) ) |
| 17 | 10 16 | impbii | |- ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) <-> ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 18 | 17 | a1i | |- ( G e. UPGraph -> ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I ) <-> ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
| 19 | 4 6 18 | 3bitrd | |- ( G e. UPGraph -> ( F ( EulerPaths ` G ) P <-> ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |