This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for upgr1wlkd . (Contributed by AV, 22-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgr1wlkd.p | |- P = <" X Y "> |
|
| upgr1wlkd.f | |- F = <" J "> |
||
| upgr1wlkd.x | |- ( ph -> X e. ( Vtx ` G ) ) |
||
| upgr1wlkd.y | |- ( ph -> Y e. ( Vtx ` G ) ) |
||
| upgr1wlkd.j | |- ( ph -> ( ( iEdg ` G ) ` J ) = { X , Y } ) |
||
| Assertion | upgr1wlkdlem2 | |- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( ( iEdg ` G ) ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgr1wlkd.p | |- P = <" X Y "> |
|
| 2 | upgr1wlkd.f | |- F = <" J "> |
|
| 3 | upgr1wlkd.x | |- ( ph -> X e. ( Vtx ` G ) ) |
|
| 4 | upgr1wlkd.y | |- ( ph -> Y e. ( Vtx ` G ) ) |
|
| 5 | upgr1wlkd.j | |- ( ph -> ( ( iEdg ` G ) ` J ) = { X , Y } ) |
|
| 6 | ssid | |- { X , Y } C_ { X , Y } |
|
| 7 | sseq2 | |- ( ( ( iEdg ` G ) ` J ) = { X , Y } -> ( { X , Y } C_ ( ( iEdg ` G ) ` J ) <-> { X , Y } C_ { X , Y } ) ) |
|
| 8 | 7 | adantl | |- ( ( ( ph /\ X =/= Y ) /\ ( ( iEdg ` G ) ` J ) = { X , Y } ) -> ( { X , Y } C_ ( ( iEdg ` G ) ` J ) <-> { X , Y } C_ { X , Y } ) ) |
| 9 | 6 8 | mpbiri | |- ( ( ( ph /\ X =/= Y ) /\ ( ( iEdg ` G ) ` J ) = { X , Y } ) -> { X , Y } C_ ( ( iEdg ` G ) ` J ) ) |
| 10 | 5 9 | mpidan | |- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( ( iEdg ` G ) ` J ) ) |