This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unpreima | |- ( Fun F -> ( `' F " ( A u. B ) ) = ( ( `' F " A ) u. ( `' F " B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
| 2 | elpreima | |- ( F Fn dom F -> ( x e. ( `' F " ( A u. B ) ) <-> ( x e. dom F /\ ( F ` x ) e. ( A u. B ) ) ) ) |
|
| 3 | elun | |- ( ( F ` x ) e. ( A u. B ) <-> ( ( F ` x ) e. A \/ ( F ` x ) e. B ) ) |
|
| 4 | 3 | anbi2i | |- ( ( x e. dom F /\ ( F ` x ) e. ( A u. B ) ) <-> ( x e. dom F /\ ( ( F ` x ) e. A \/ ( F ` x ) e. B ) ) ) |
| 5 | andi | |- ( ( x e. dom F /\ ( ( F ` x ) e. A \/ ( F ` x ) e. B ) ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) \/ ( x e. dom F /\ ( F ` x ) e. B ) ) ) |
|
| 6 | 4 5 | bitri | |- ( ( x e. dom F /\ ( F ` x ) e. ( A u. B ) ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) \/ ( x e. dom F /\ ( F ` x ) e. B ) ) ) |
| 7 | elun | |- ( x e. ( ( `' F " A ) u. ( `' F " B ) ) <-> ( x e. ( `' F " A ) \/ x e. ( `' F " B ) ) ) |
|
| 8 | elpreima | |- ( F Fn dom F -> ( x e. ( `' F " A ) <-> ( x e. dom F /\ ( F ` x ) e. A ) ) ) |
|
| 9 | elpreima | |- ( F Fn dom F -> ( x e. ( `' F " B ) <-> ( x e. dom F /\ ( F ` x ) e. B ) ) ) |
|
| 10 | 8 9 | orbi12d | |- ( F Fn dom F -> ( ( x e. ( `' F " A ) \/ x e. ( `' F " B ) ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) \/ ( x e. dom F /\ ( F ` x ) e. B ) ) ) ) |
| 11 | 7 10 | bitrid | |- ( F Fn dom F -> ( x e. ( ( `' F " A ) u. ( `' F " B ) ) <-> ( ( x e. dom F /\ ( F ` x ) e. A ) \/ ( x e. dom F /\ ( F ` x ) e. B ) ) ) ) |
| 12 | 6 11 | bitr4id | |- ( F Fn dom F -> ( ( x e. dom F /\ ( F ` x ) e. ( A u. B ) ) <-> x e. ( ( `' F " A ) u. ( `' F " B ) ) ) ) |
| 13 | 2 12 | bitrd | |- ( F Fn dom F -> ( x e. ( `' F " ( A u. B ) ) <-> x e. ( ( `' F " A ) u. ( `' F " B ) ) ) ) |
| 14 | 13 | eqrdv | |- ( F Fn dom F -> ( `' F " ( A u. B ) ) = ( ( `' F " A ) u. ( `' F " B ) ) ) |
| 15 | 1 14 | sylbi | |- ( Fun F -> ( `' F " ( A u. B ) ) = ( ( `' F " A ) u. ( `' F " B ) ) ) |