This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Field of a Cartesian square. (Contributed by FL, 10-Oct-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unixpid | |- U. U. ( A X. A ) = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 | |- ( A = (/) -> ( A X. A ) = ( (/) X. A ) ) |
|
| 2 | 0xp | |- ( (/) X. A ) = (/) |
|
| 3 | 1 2 | eqtrdi | |- ( A = (/) -> ( A X. A ) = (/) ) |
| 4 | unieq | |- ( ( A X. A ) = (/) -> U. ( A X. A ) = U. (/) ) |
|
| 5 | 4 | unieqd | |- ( ( A X. A ) = (/) -> U. U. ( A X. A ) = U. U. (/) ) |
| 6 | uni0 | |- U. (/) = (/) |
|
| 7 | 6 | unieqi | |- U. U. (/) = U. (/) |
| 8 | 7 6 | eqtri | |- U. U. (/) = (/) |
| 9 | eqtr | |- ( ( U. U. ( A X. A ) = U. U. (/) /\ U. U. (/) = (/) ) -> U. U. ( A X. A ) = (/) ) |
|
| 10 | eqtr | |- ( ( U. U. ( A X. A ) = (/) /\ (/) = A ) -> U. U. ( A X. A ) = A ) |
|
| 11 | 10 | expcom | |- ( (/) = A -> ( U. U. ( A X. A ) = (/) -> U. U. ( A X. A ) = A ) ) |
| 12 | 11 | eqcoms | |- ( A = (/) -> ( U. U. ( A X. A ) = (/) -> U. U. ( A X. A ) = A ) ) |
| 13 | 9 12 | syl5com | |- ( ( U. U. ( A X. A ) = U. U. (/) /\ U. U. (/) = (/) ) -> ( A = (/) -> U. U. ( A X. A ) = A ) ) |
| 14 | 5 8 13 | sylancl | |- ( ( A X. A ) = (/) -> ( A = (/) -> U. U. ( A X. A ) = A ) ) |
| 15 | 3 14 | mpcom | |- ( A = (/) -> U. U. ( A X. A ) = A ) |
| 16 | df-ne | |- ( A =/= (/) <-> -. A = (/) ) |
|
| 17 | xpnz | |- ( ( A =/= (/) /\ A =/= (/) ) <-> ( A X. A ) =/= (/) ) |
|
| 18 | unixp | |- ( ( A X. A ) =/= (/) -> U. U. ( A X. A ) = ( A u. A ) ) |
|
| 19 | unidm | |- ( A u. A ) = A |
|
| 20 | 18 19 | eqtrdi | |- ( ( A X. A ) =/= (/) -> U. U. ( A X. A ) = A ) |
| 21 | 17 20 | sylbi | |- ( ( A =/= (/) /\ A =/= (/) ) -> U. U. ( A X. A ) = A ) |
| 22 | 16 16 21 | sylancbr | |- ( -. A = (/) -> U. U. ( A X. A ) = A ) |
| 23 | 15 22 | pm2.61i | |- U. U. ( A X. A ) = A |