This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image of a union. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unima | |- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( F " ( B u. C ) ) = ( ( F " B ) u. ( F " C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> F Fn A ) |
|
| 2 | simpl | |- ( ( B C_ A /\ C C_ A ) -> B C_ A ) |
|
| 3 | simpr | |- ( ( B C_ A /\ C C_ A ) -> C C_ A ) |
|
| 4 | 2 3 | unssd | |- ( ( B C_ A /\ C C_ A ) -> ( B u. C ) C_ A ) |
| 5 | 4 | 3adant1 | |- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( B u. C ) C_ A ) |
| 6 | 1 5 | fvelimabd | |- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( y e. ( F " ( B u. C ) ) <-> E. x e. ( B u. C ) ( F ` x ) = y ) ) |
| 7 | rexun | |- ( E. x e. ( B u. C ) ( F ` x ) = y <-> ( E. x e. B ( F ` x ) = y \/ E. x e. C ( F ` x ) = y ) ) |
|
| 8 | 6 7 | bitrdi | |- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( y e. ( F " ( B u. C ) ) <-> ( E. x e. B ( F ` x ) = y \/ E. x e. C ( F ` x ) = y ) ) ) |
| 9 | fvelimab | |- ( ( F Fn A /\ B C_ A ) -> ( y e. ( F " B ) <-> E. x e. B ( F ` x ) = y ) ) |
|
| 10 | 9 | 3adant3 | |- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( y e. ( F " B ) <-> E. x e. B ( F ` x ) = y ) ) |
| 11 | fvelimab | |- ( ( F Fn A /\ C C_ A ) -> ( y e. ( F " C ) <-> E. x e. C ( F ` x ) = y ) ) |
|
| 12 | 11 | 3adant2 | |- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( y e. ( F " C ) <-> E. x e. C ( F ` x ) = y ) ) |
| 13 | 10 12 | orbi12d | |- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( ( y e. ( F " B ) \/ y e. ( F " C ) ) <-> ( E. x e. B ( F ` x ) = y \/ E. x e. C ( F ` x ) = y ) ) ) |
| 14 | 8 13 | bitr4d | |- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( y e. ( F " ( B u. C ) ) <-> ( y e. ( F " B ) \/ y e. ( F " C ) ) ) ) |
| 15 | elun | |- ( y e. ( ( F " B ) u. ( F " C ) ) <-> ( y e. ( F " B ) \/ y e. ( F " C ) ) ) |
|
| 16 | 14 15 | bitr4di | |- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( y e. ( F " ( B u. C ) ) <-> y e. ( ( F " B ) u. ( F " C ) ) ) ) |
| 17 | 16 | eqrdv | |- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( F " ( B u. C ) ) = ( ( F " B ) u. ( F " C ) ) ) |