This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The membership relation for a Cartesian product is inherited by union. (Contributed by NM, 16-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unielxp | |- ( A e. ( B X. C ) -> U. A e. U. ( B X. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp7 | |- ( A e. ( B X. C ) <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) |
|
| 2 | elvvuni | |- ( A e. ( _V X. _V ) -> U. A e. A ) |
|
| 3 | 2 | adantr | |- ( ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) -> U. A e. A ) |
| 4 | simprl | |- ( ( U. A e. A /\ ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) -> A e. ( _V X. _V ) ) |
|
| 5 | eleq2 | |- ( x = A -> ( U. A e. x <-> U. A e. A ) ) |
|
| 6 | eleq1 | |- ( x = A -> ( x e. ( _V X. _V ) <-> A e. ( _V X. _V ) ) ) |
|
| 7 | fveq2 | |- ( x = A -> ( 1st ` x ) = ( 1st ` A ) ) |
|
| 8 | 7 | eleq1d | |- ( x = A -> ( ( 1st ` x ) e. B <-> ( 1st ` A ) e. B ) ) |
| 9 | fveq2 | |- ( x = A -> ( 2nd ` x ) = ( 2nd ` A ) ) |
|
| 10 | 9 | eleq1d | |- ( x = A -> ( ( 2nd ` x ) e. C <-> ( 2nd ` A ) e. C ) ) |
| 11 | 8 10 | anbi12d | |- ( x = A -> ( ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) <-> ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) |
| 12 | 6 11 | anbi12d | |- ( x = A -> ( ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) <-> ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) ) |
| 13 | 5 12 | anbi12d | |- ( x = A -> ( ( U. A e. x /\ ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) ) <-> ( U. A e. A /\ ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) ) ) |
| 14 | 13 | spcegv | |- ( A e. ( _V X. _V ) -> ( ( U. A e. A /\ ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) -> E. x ( U. A e. x /\ ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) ) ) ) |
| 15 | 4 14 | mpcom | |- ( ( U. A e. A /\ ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) -> E. x ( U. A e. x /\ ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) ) ) |
| 16 | eluniab | |- ( U. A e. U. { x | ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) } <-> E. x ( U. A e. x /\ ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) ) ) |
|
| 17 | 15 16 | sylibr | |- ( ( U. A e. A /\ ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) -> U. A e. U. { x | ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) } ) |
| 18 | xp2 | |- ( B X. C ) = { x e. ( _V X. _V ) | ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) } |
|
| 19 | df-rab | |- { x e. ( _V X. _V ) | ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) } = { x | ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) } |
|
| 20 | 18 19 | eqtri | |- ( B X. C ) = { x | ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) } |
| 21 | 20 | unieqi | |- U. ( B X. C ) = U. { x | ( x e. ( _V X. _V ) /\ ( ( 1st ` x ) e. B /\ ( 2nd ` x ) e. C ) ) } |
| 22 | 17 21 | eleqtrrdi | |- ( ( U. A e. A /\ ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) ) -> U. A e. U. ( B X. C ) ) |
| 23 | 3 22 | mpancom | |- ( ( A e. ( _V X. _V ) /\ ( ( 1st ` A ) e. B /\ ( 2nd ` A ) e. C ) ) -> U. A e. U. ( B X. C ) ) |
| 24 | 1 23 | sylbi | |- ( A e. ( B X. C ) -> U. A e. U. ( B X. C ) ) |