This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elvvuni | |- ( A e. ( _V X. _V ) -> U. A e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elvv | |- ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | vex | |- y e. _V |
|
| 4 | 2 3 | uniop | |- U. <. x , y >. = { x , y } |
| 5 | 2 3 | opi2 | |- { x , y } e. <. x , y >. |
| 6 | 4 5 | eqeltri | |- U. <. x , y >. e. <. x , y >. |
| 7 | unieq | |- ( A = <. x , y >. -> U. A = U. <. x , y >. ) |
|
| 8 | id | |- ( A = <. x , y >. -> A = <. x , y >. ) |
|
| 9 | 7 8 | eleq12d | |- ( A = <. x , y >. -> ( U. A e. A <-> U. <. x , y >. e. <. x , y >. ) ) |
| 10 | 6 9 | mpbiri | |- ( A = <. x , y >. -> U. A e. A ) |
| 11 | 10 | exlimivv | |- ( E. x E. y A = <. x , y >. -> U. A e. A ) |
| 12 | 1 11 | sylbi | |- ( A e. ( _V X. _V ) -> U. A e. A ) |