This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All nonempty subclasses of a class having a well-ordered set-like relation have minimal elements for that relation. Proposition 6.26 of TakeutiZaring p. 31. (Contributed by Scott Fenton, 29-Jan-2011) (Revised by Mario Carneiro, 26-Jun-2015) (Proof shortened by Scott Fenton, 17-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tz6.26 | |- ( ( ( R We A /\ R Se A ) /\ ( B C_ A /\ B =/= (/) ) ) -> E. y e. B Pred ( R , B , y ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wefr | |- ( R We A -> R Fr A ) |
|
| 2 | 1 | adantr | |- ( ( R We A /\ R Se A ) -> R Fr A ) |
| 3 | weso | |- ( R We A -> R Or A ) |
|
| 4 | sopo | |- ( R Or A -> R Po A ) |
|
| 5 | 3 4 | syl | |- ( R We A -> R Po A ) |
| 6 | 5 | adantr | |- ( ( R We A /\ R Se A ) -> R Po A ) |
| 7 | simpr | |- ( ( R We A /\ R Se A ) -> R Se A ) |
|
| 8 | 2 6 7 | 3jca | |- ( ( R We A /\ R Se A ) -> ( R Fr A /\ R Po A /\ R Se A ) ) |
| 9 | frpomin2 | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( B C_ A /\ B =/= (/) ) ) -> E. y e. B Pred ( R , B , y ) = (/) ) |
|
| 10 | 8 9 | sylan | |- ( ( ( R We A /\ R Se A ) /\ ( B C_ A /\ B =/= (/) ) ) -> E. y e. B Pred ( R , B , y ) = (/) ) |