This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tz6.12f.1 | |- F/_ y F |
|
| Assertion | tz6.12f | |- ( ( <. A , y >. e. F /\ E! y <. A , y >. e. F ) -> ( F ` A ) = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz6.12f.1 | |- F/_ y F |
|
| 2 | opeq2 | |- ( z = y -> <. A , z >. = <. A , y >. ) |
|
| 3 | 2 | eleq1d | |- ( z = y -> ( <. A , z >. e. F <-> <. A , y >. e. F ) ) |
| 4 | 1 | nfel2 | |- F/ y <. A , z >. e. F |
| 5 | nfv | |- F/ z <. A , y >. e. F |
|
| 6 | 4 5 3 | cbveuw | |- ( E! z <. A , z >. e. F <-> E! y <. A , y >. e. F ) |
| 7 | 6 | a1i | |- ( z = y -> ( E! z <. A , z >. e. F <-> E! y <. A , y >. e. F ) ) |
| 8 | 3 7 | anbi12d | |- ( z = y -> ( ( <. A , z >. e. F /\ E! z <. A , z >. e. F ) <-> ( <. A , y >. e. F /\ E! y <. A , y >. e. F ) ) ) |
| 9 | eqeq2 | |- ( z = y -> ( ( F ` A ) = z <-> ( F ` A ) = y ) ) |
|
| 10 | 8 9 | imbi12d | |- ( z = y -> ( ( ( <. A , z >. e. F /\ E! z <. A , z >. e. F ) -> ( F ` A ) = z ) <-> ( ( <. A , y >. e. F /\ E! y <. A , y >. e. F ) -> ( F ` A ) = y ) ) ) |
| 11 | tz6.12 | |- ( ( <. A , z >. e. F /\ E! z <. A , z >. e. F ) -> ( F ` A ) = z ) |
|
| 12 | 10 11 | chvarvv | |- ( ( <. A , y >. e. F /\ E! y <. A , y >. e. F ) -> ( F ` A ) = y ) |