This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the binary topological product, which is homeomorphic to the general topological product over a two element set, but is more convenient to use. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tx | |- tX = ( r e. _V , s e. _V |-> ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctx | |- tX |
|
| 1 | vr | |- r |
|
| 2 | cvv | |- _V |
|
| 3 | vs | |- s |
|
| 4 | ctg | |- topGen |
|
| 5 | vx | |- x |
|
| 6 | 1 | cv | |- r |
| 7 | vy | |- y |
|
| 8 | 3 | cv | |- s |
| 9 | 5 | cv | |- x |
| 10 | 7 | cv | |- y |
| 11 | 9 10 | cxp | |- ( x X. y ) |
| 12 | 5 7 6 8 11 | cmpo | |- ( x e. r , y e. s |-> ( x X. y ) ) |
| 13 | 12 | crn | |- ran ( x e. r , y e. s |-> ( x X. y ) ) |
| 14 | 13 4 | cfv | |- ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) |
| 15 | 1 3 2 2 14 | cmpo | |- ( r e. _V , s e. _V |-> ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) ) |
| 16 | 0 15 | wceq | |- tX = ( r e. _V , s e. _V |-> ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) ) |