This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of all topologies is a proper class. The proof uses discrete topologies and pwnex ; an alternate proof uses indiscrete topologies (see indistop ) and the analogue of pwnex with pairs { (/) , x } instead of power sets ~P x (that analogue is also a consequence of abnex ). (Contributed by BJ, 2-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | topnex | |- Top e/ _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwnex | |- { y | E. x y = ~P x } e/ _V |
|
| 2 | 1 | neli | |- -. { y | E. x y = ~P x } e. _V |
| 3 | distop | |- ( x e. _V -> ~P x e. Top ) |
|
| 4 | 3 | elv | |- ~P x e. Top |
| 5 | eleq1 | |- ( y = ~P x -> ( y e. Top <-> ~P x e. Top ) ) |
|
| 6 | 4 5 | mpbiri | |- ( y = ~P x -> y e. Top ) |
| 7 | 6 | exlimiv | |- ( E. x y = ~P x -> y e. Top ) |
| 8 | 7 | abssi | |- { y | E. x y = ~P x } C_ Top |
| 9 | ssexg | |- ( ( { y | E. x y = ~P x } C_ Top /\ Top e. _V ) -> { y | E. x y = ~P x } e. _V ) |
|
| 10 | 8 9 | mpan | |- ( Top e. _V -> { y | E. x y = ~P x } e. _V ) |
| 11 | 2 10 | mto | |- -. Top e. _V |
| 12 | 11 | nelir | |- Top e/ _V |