This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Least upper bounds in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | topclat.i | |- I = ( toInc ` J ) |
|
| toplatlub.j | |- ( ph -> J e. Top ) |
||
| toplatlub.s | |- ( ph -> S C_ J ) |
||
| toplatlub.u | |- U = ( lub ` I ) |
||
| Assertion | toplatlub | |- ( ph -> ( U ` S ) = U. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topclat.i | |- I = ( toInc ` J ) |
|
| 2 | toplatlub.j | |- ( ph -> J e. Top ) |
|
| 3 | toplatlub.s | |- ( ph -> S C_ J ) |
|
| 4 | toplatlub.u | |- U = ( lub ` I ) |
|
| 5 | 4 | a1i | |- ( ph -> U = ( lub ` I ) ) |
| 6 | uniopn | |- ( ( J e. Top /\ S C_ J ) -> U. S e. J ) |
|
| 7 | 2 3 6 | syl2anc | |- ( ph -> U. S e. J ) |
| 8 | intmin | |- ( U. S e. J -> |^| { x e. J | U. S C_ x } = U. S ) |
|
| 9 | 8 | eqcomd | |- ( U. S e. J -> U. S = |^| { x e. J | U. S C_ x } ) |
| 10 | 7 9 | syl | |- ( ph -> U. S = |^| { x e. J | U. S C_ x } ) |
| 11 | 1 2 3 5 10 7 | ipolub | |- ( ph -> ( U ` S ) = U. S ) |