This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principle of Transfinite Recursion, part 3 of 3. Theorem 7.41(3) of TakeutiZaring p. 47. Finally, we show that F is unique. We do this by showing that any class B with the same properties of F that we showed in parts 1 and 2 is identical to F . (Contributed by NM, 18-Aug-1994) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfr.1 | |- F = recs ( G ) |
|
| Assertion | tfr3 | |- ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> B = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfr.1 | |- F = recs ( G ) |
|
| 2 | nfv | |- F/ x B Fn On |
|
| 3 | nfra1 | |- F/ x A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) |
|
| 4 | 2 3 | nfan | |- F/ x ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) |
| 5 | nfv | |- F/ x ( B ` y ) = ( F ` y ) |
|
| 6 | 4 5 | nfim | |- F/ x ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` y ) = ( F ` y ) ) |
| 7 | fveq2 | |- ( x = y -> ( B ` x ) = ( B ` y ) ) |
|
| 8 | fveq2 | |- ( x = y -> ( F ` x ) = ( F ` y ) ) |
|
| 9 | 7 8 | eqeq12d | |- ( x = y -> ( ( B ` x ) = ( F ` x ) <-> ( B ` y ) = ( F ` y ) ) ) |
| 10 | 9 | imbi2d | |- ( x = y -> ( ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` x ) = ( F ` x ) ) <-> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` y ) = ( F ` y ) ) ) ) |
| 11 | r19.21v | |- ( A. y e. x ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` y ) = ( F ` y ) ) <-> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> A. y e. x ( B ` y ) = ( F ` y ) ) ) |
|
| 12 | rsp | |- ( A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) -> ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) ) |
|
| 13 | onss | |- ( x e. On -> x C_ On ) |
|
| 14 | 1 | tfr1 | |- F Fn On |
| 15 | fvreseq | |- ( ( ( B Fn On /\ F Fn On ) /\ x C_ On ) -> ( ( B |` x ) = ( F |` x ) <-> A. y e. x ( B ` y ) = ( F ` y ) ) ) |
|
| 16 | 14 15 | mpanl2 | |- ( ( B Fn On /\ x C_ On ) -> ( ( B |` x ) = ( F |` x ) <-> A. y e. x ( B ` y ) = ( F ` y ) ) ) |
| 17 | fveq2 | |- ( ( B |` x ) = ( F |` x ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) |
|
| 18 | 16 17 | biimtrrdi | |- ( ( B Fn On /\ x C_ On ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) |
| 19 | 13 18 | sylan2 | |- ( ( B Fn On /\ x e. On ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) |
| 20 | 19 | ancoms | |- ( ( x e. On /\ B Fn On ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) |
| 21 | 20 | imp | |- ( ( ( x e. On /\ B Fn On ) /\ A. y e. x ( B ` y ) = ( F ` y ) ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) |
| 22 | 21 | adantr | |- ( ( ( ( x e. On /\ B Fn On ) /\ A. y e. x ( B ` y ) = ( F ` y ) ) /\ ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ x e. On ) ) -> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) |
| 23 | 1 | tfr2 | |- ( x e. On -> ( F ` x ) = ( G ` ( F |` x ) ) ) |
| 24 | 23 | jctr | |- ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ ( x e. On -> ( F ` x ) = ( G ` ( F |` x ) ) ) ) ) |
| 25 | jcab | |- ( ( x e. On -> ( ( B ` x ) = ( G ` ( B |` x ) ) /\ ( F ` x ) = ( G ` ( F |` x ) ) ) ) <-> ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ ( x e. On -> ( F ` x ) = ( G ` ( F |` x ) ) ) ) ) |
|
| 26 | 24 25 | sylibr | |- ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( ( B ` x ) = ( G ` ( B |` x ) ) /\ ( F ` x ) = ( G ` ( F |` x ) ) ) ) ) |
| 27 | eqeq12 | |- ( ( ( B ` x ) = ( G ` ( B |` x ) ) /\ ( F ` x ) = ( G ` ( F |` x ) ) ) -> ( ( B ` x ) = ( F ` x ) <-> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) |
|
| 28 | 26 27 | syl6 | |- ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( ( B ` x ) = ( F ` x ) <-> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) ) |
| 29 | 28 | imp | |- ( ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ x e. On ) -> ( ( B ` x ) = ( F ` x ) <-> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) |
| 30 | 29 | adantl | |- ( ( ( ( x e. On /\ B Fn On ) /\ A. y e. x ( B ` y ) = ( F ` y ) ) /\ ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ x e. On ) ) -> ( ( B ` x ) = ( F ` x ) <-> ( G ` ( B |` x ) ) = ( G ` ( F |` x ) ) ) ) |
| 31 | 22 30 | mpbird | |- ( ( ( ( x e. On /\ B Fn On ) /\ A. y e. x ( B ` y ) = ( F ` y ) ) /\ ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) /\ x e. On ) ) -> ( B ` x ) = ( F ` x ) ) |
| 32 | 31 | exp43 | |- ( ( x e. On /\ B Fn On ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( B ` x ) = ( F ` x ) ) ) ) ) |
| 33 | 32 | com4t | |- ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( ( x e. On /\ B Fn On ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) ) |
| 34 | 33 | exp4a | |- ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( x e. On -> ( B Fn On -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) ) ) |
| 35 | 34 | pm2.43d | |- ( ( x e. On -> ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( B Fn On -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) ) |
| 36 | 12 35 | syl | |- ( A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) -> ( x e. On -> ( B Fn On -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) ) |
| 37 | 36 | com3l | |- ( x e. On -> ( B Fn On -> ( A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) ) |
| 38 | 37 | impd | |- ( x e. On -> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( A. y e. x ( B ` y ) = ( F ` y ) -> ( B ` x ) = ( F ` x ) ) ) ) |
| 39 | 38 | a2d | |- ( x e. On -> ( ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> A. y e. x ( B ` y ) = ( F ` y ) ) -> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` x ) = ( F ` x ) ) ) ) |
| 40 | 11 39 | biimtrid | |- ( x e. On -> ( A. y e. x ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` y ) = ( F ` y ) ) -> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` x ) = ( F ` x ) ) ) ) |
| 41 | 6 10 40 | tfis2f | |- ( x e. On -> ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( B ` x ) = ( F ` x ) ) ) |
| 42 | 41 | com12 | |- ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> ( x e. On -> ( B ` x ) = ( F ` x ) ) ) |
| 43 | 4 42 | ralrimi | |- ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> A. x e. On ( B ` x ) = ( F ` x ) ) |
| 44 | eqfnfv | |- ( ( B Fn On /\ F Fn On ) -> ( B = F <-> A. x e. On ( B ` x ) = ( F ` x ) ) ) |
|
| 45 | 14 44 | mpan2 | |- ( B Fn On -> ( B = F <-> A. x e. On ( B ` x ) = ( F ` x ) ) ) |
| 46 | 45 | biimpar | |- ( ( B Fn On /\ A. x e. On ( B ` x ) = ( F ` x ) ) -> B = F ) |
| 47 | 43 46 | syldan | |- ( ( B Fn On /\ A. x e. On ( B ` x ) = ( G ` ( B |` x ) ) ) -> B = F ) |